An explicit dg enhancement of singularity category
In this talk we introduce an explicit dg enhancement of the singularity category of an algebra. As an application, we show that the singularity category of any finite dimensional algebra (given by a quiver with relations) is triangle equivalent to the perfect derived category of a dg Leavitt path algebra. We also explain how this can be viewed as a deformed version of the known description of the singularity categories of radical-square-zero algebras.